The EU Electricity Policy Outlook for the Smart Grid Roll-Out
The energy transition from a socio-economic system based on fossil fuels to a sustainable low-carbon system is a multi-facetted process. This “transformation” of the energy system, more specifically of the power system, creates several challenges.
These concern in particular the connections with the existing electricity infrastructure of new renewable power sources and the distribution of generating systems, together with automated grid assets and smart meters. The European energy transition is based on two different revolutions: i) the “post-World War II” industrial investment recovery, when electricity systems were built; and ii) the “Information Technology” revolution that is bringing new communication and connection modes to the grid.
There is no unique path towards a decarbonised electricity system. The implementation of this development depends on the current local configuration of electricity grids, the interaction between grid operators, the generation mix, the availability of backup generation capacities and the level of cross-border interconnections. Moreover, this evolution impacts the roles of all actors of the energy system, in particular those of Transmission System Operators (TSOs), of Distribution System operators (DSOs) and of National Regulatory Authorities (NRAs).
Besides the technical challenge, the Energy transition requires the transformation of business models designed as platforms, which are able to integrate different levels of stakeholders, whereas in the past, utilities were based on vertical, public monopoly structures that were often paid based on cost-of-service rules. The traditional utility models were characterised by centralised governance but as a result of technological changes, this system is making way for a more horizontal and multilateral governance. The role of consumers is also changing, with new attributes in particular with regards to demand-response measures.
The purpose of this paper is to analyse the key structural developments behind the European energy transition, as well as the main regulatory and policy challenges linked to the transformation of the system.
Please download the PDF paper to read the full text:
Available in:
Regions and themes
ISBN / ISSN
Share
Download the full analysis
This page contains only a summary of our work. If you would like to have access to all the information from our research on the subject, you can download the full version in PDF format.
The EU Electricity Policy Outlook for the Smart Grid Roll-Out
Related centers and programs
Discover our other research centers and programsFind out more
Discover all our analysesCan carbon markets make a breakthrough at COP29?
Voluntary carbon markets (VCMs) have a strong potential, notably to help bridge the climate finance gap, especially for Africa.
Taiwan's Energy Supply: The Achilles Heel of National Security
Making Taiwan a “dead island” through “a blockade” and “disruption of energy supplies” leading to an “economic collapse.” This is how Colonel Zhang Chi of the People’s Liberation Army and professor at the National Defense University in Beijing described the objective of the Chinese military exercises in May 2024, following the inauguration of Taiwan’s new president, Lai Ching-te. Similar to the exercises that took place after Nancy Pelosi’s visit to Taipei in August 2022, China designated exercise zones facing Taiwan’s main ports, effectively simulating a military embargo on Taiwan. These maneuvers illustrate Beijing’s growing pressure on the island, which it aims to conquer, and push Taiwan to question its resilience capacity.
India’s Broken Power Economics : Addressing DISCOM Challenges
India’s electricity demand is rising at an impressive annual rate of 9%. From 2014 to 2023, the country’s gross domestic product (GDP) surged from 1.95 trillion dollars ($) to $3.2 trillion (constant 2015 US$), and the nation is poised to maintain this upward trajectory, with projected growth rates exceeding 7% in 2024 and 2025. Correspondingly, peak power demand has soared from 136 gigawatts (GW) in 2014 to 243 GW in 2024, positioning India as the world’s third-largest energy consumer. In the past decade, the country has increased its power generation capacity by a remarkable 190 GW, pushing its total installed capacity beyond 400 GW.
The Troubled Reorganization of Critical Raw Materials Value Chains: An Assessment of European De-risking Policies
With the demand for critical raw materials set to, at a minimum, double by 2030 in the context of the current energy transition policies, the concentration of critical raw materials (CRM) supplies and, even more, of refining capacities in a handful of countries has become one of the paramount issues in international, bilateral and national discussions. China’s dominant position and successive export controls on critical raw materials (lately, germanium, gallium, rare earths processing technology, graphite, antimony) point to a trend of weaponizing critical dependencies.