E-mobility: European Energy and Transport Policies at Crossroads
European clean transport policy envisages the development of charging infrastructures for electric vehicles within a European e-mobility framework. After the downturns of the Volkswagen scandal and the prevailing low European carbon price, the EU is bringing forward car passenger transport electrification. This requires new business models based on interoperability.
In supporting the objective of deployment of 8 million electric vehicles in 2020 and ensuring e-mobility services throughout the European Union (EU), the European strategy for low-emission mobility reminds Member States of their obligation to install publicly accessible infrastructures for electric vehicles by the end of the decade, as defined in Directive 2014/94. The strategy points towards an extension beyond the 2020 horizon of low-emission policies not only in car transportation, but also in goods transport (lorries), in public passenger transport (buses), and international aviation. It comes in the context of two major policy downturns. First, the Volkswagen scandal last October 2015 put a blow on the European cars manufacturing industry, as much as on the EU’s oversight role in car emissions standards. Second, the sustained low prevailing carbon price is signalling that no emission abatement is taking place in the EU carbon market (European Emission Trading Scheme) covering power plants and industrial facilities. In car passenger transport, emissions can indeed be abated with electric vehicle, if the underlying system from which electricity is drawn is decarbonised.
European Strategy for Low Emission Mobility: turning the steering wheel towards electric mobility
As part of the Clean Power Transport Package, the European Strategy for low-emission mobility leans upon the Directive 2014/94 on Alternative Fuels Infrastructure, which requires Member States to roll out an infrastructure connecting electric vehicles (EVs). However, it is not giving any additional requirements for natural gas vehicle nor hydrogen-based vehicles (fuel cells). Among all forms of low emission vehicles (EVs, Compressed Natural Gas, hydrogen, biofuels), this new strategy orientation is promoting an electric charging infrastructure (charging stations) supporting the uptake of electric vehicles. It comes at a point where the binding objective of 10% of renewables in transport (in place for 2020) may not be pursued towards 2030, thus limiting the adoption of biofuels as a fuel for transportation. As part of the strategy, the Commission is also examining the option of promoting the installation of electric vehicle re-charging points in residential buildings.
To read the full text, download the pdf below.
Download the full analysis
This page contains only a summary of our work. If you would like to have access to all the information from our research on the subject, you can download the full version in PDF format.
E-mobility: European Energy and Transport Policies at Crossroads
Related centers and programs
Discover our other research centers and programsFind out more
Discover all our analysesCan carbon markets make a breakthrough at COP29?
Voluntary carbon markets (VCMs) have a strong potential, notably to help bridge the climate finance gap, especially for Africa.
Taiwan's Energy Supply: The Achilles Heel of National Security
Making Taiwan a “dead island” through “a blockade” and “disruption of energy supplies” leading to an “economic collapse.” This is how Colonel Zhang Chi of the People’s Liberation Army and professor at the National Defense University in Beijing described the objective of the Chinese military exercises in May 2024, following the inauguration of Taiwan’s new president, Lai Ching-te. Similar to the exercises that took place after Nancy Pelosi’s visit to Taipei in August 2022, China designated exercise zones facing Taiwan’s main ports, effectively simulating a military embargo on Taiwan. These maneuvers illustrate Beijing’s growing pressure on the island, which it aims to conquer, and push Taiwan to question its resilience capacity.
India’s Broken Power Economics : Addressing DISCOM Challenges
India’s electricity demand is rising at an impressive annual rate of 9%. From 2014 to 2023, the country’s gross domestic product (GDP) surged from 1.95 trillion dollars ($) to $3.2 trillion (constant 2015 US$), and the nation is poised to maintain this upward trajectory, with projected growth rates exceeding 7% in 2024 and 2025. Correspondingly, peak power demand has soared from 136 gigawatts (GW) in 2014 to 243 GW in 2024, positioning India as the world’s third-largest energy consumer. In the past decade, the country has increased its power generation capacity by a remarkable 190 GW, pushing its total installed capacity beyond 400 GW.
The Troubled Reorganization of Critical Raw Materials Value Chains: An Assessment of European De-risking Policies
With the demand for critical raw materials set to, at a minimum, double by 2030 in the context of the current energy transition policies, the concentration of critical raw materials (CRM) supplies and, even more, of refining capacities in a handful of countries has become one of the paramount issues in international, bilateral and national discussions. China’s dominant position and successive export controls on critical raw materials (lately, germanium, gallium, rare earths processing technology, graphite, antimony) point to a trend of weaponizing critical dependencies.